Problema 1. Una
empresa se dedica a la producción de frascos de perfume y de agua de colonia a
partir de tres factores productivos F1, F2 y F3.
Las unidades de dichos factores utilizados en la producción de cada tipo de
frasco se detallan en la siguiente tabla.
Si el
precio de venta de un frasco de perfume es de 60 €, de una de agua de colonia
es de 20 €, y la empresa dispone de 240 unidades de F1, 360 de F2
y 440 de F3; calcula el número de frascos de cada tipo que debe de
fabricar la empresa para maximizar sus beneficios.
Solución:
La función
objetivo que hay que maximizar es:
f(x, y) = 60 x + 20 y
Y con las restricciones:
Los
vértices se encuentran en los puntos siguientes:
A (0, 110), B (20, 110), C (180, 30) y D
(180, 0)
El máximo valor se obtiene en f (180, 30) =
11400, luego el máximo beneficio se consigue haciendo 180 frascos de perfume y
30 de agua de colonia.
Problema 2. Una
compañía fabrica y vende dos modelos de mesillas de noche M1 y M2.
Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo M1 y
de 30 minutos para el M2; y un trabajo de máquina de 20 minutos para
M1 y de 10 minutos para M2. Se dispone para el
trabajo manual de 100 horas al mes y para la máquina 80 horas al mes.
Sabiendo
que el beneficio por unidad es de 15 y 10 euros para M1 y M2,
respectivamente, ¿cómo hay que planificar la producción de mesillas para
obtener el máximo beneficio?
Solución:
La solución óptima es fabricar 210 del modelo M1 y 60
del modelo M2 para obtener un beneficio de 3 750 €.
Problema 3. Un
camionero transporta dos tipos de mercancías, X e Y, ganando 60 y 50 euros por
tonelada respectivamente. Al menos debe transportar 8 toneladas de X y como
mucho el doble de cantidad que de Y.
¿A cuánto asciende su ganancia total
máxima si dispone de un camión que puede transportar hasta 30 toneladas?
Solución: la ganancia total máxima es de 1700 euros que
conseguirá transportando 20 toneladas de X y 10 toneladas de Y.
Problema 4.Con el
comienzo del curso se va a lanzar una oferta de material escolar. Unos
almacenes quieren ofrecer 600 cuadernos, 500 carpetas y 400 bolígrafos para la
oferta, empaquetándolos de dos formas distintas; en el primer lote pondrá 2
cuadernos, 1 carpeta y 2 bolígrafos; en el segundo, pondrá 3 cuadernos, 1 carpeta
y 1 bolígrafo. Los precios de cada lote serán 6.5 € y 7 €, respectivamente.
¿Cuántos lotes de cada tipo es conveniente
empaquetar para obtener el máximo beneficio?
Solución:
La solución óptima son 150 lotes del primer tipo y 100
lotes del segundo tipo.
Problema 5. Un
agricultor desea plantar 750 cerezos, 700 perales y 650 manzanos. En el vivero
Agro ofrecen un lote de 15 cerezos, 30 perales y 10 manzanos por 700 euros y en
el vivero Ceres el lote de 15 cerezos, 10 perales y 20 manzanos cuesta 650
euros.
a) Plantea
y resuelve un programa lineal para averiguar el número de lotes que ha de
comprar en cada vivero para que pueda plantar los árboles que desea y para que
el coste total de adquisición sea mínimo.
b) ¿Utiliza el agricultor todos los árboles que
ha adquirido?. En caso negativo di cuántos no ha plantado y de qué tipo
son.
Solución:
a) El
precio es mínimo con 10 lotes de Agro y 40 de Ceres.
b)
Utiliza todos los cerezos y todos los perales, pero deja sin utilizar 250
manzanos.
Problema 6. En
la elaboración artesana de pastillas de jabón, se dispone de 600 g de un
determinado colorante para colorear pastillas grandes y pequeñas. Cada una de las
grandes necesita 40 g de dicho colorante y cada una de las pequeñas 30 g. Se quiere
elaborar al menos tres pastillas grandes, y al menos el doble de pequeñas que
de las grandes. Cada pastilla grande proporciona un beneficio de 2 € y la
pequeña de 1 €.
¿Cuántas
pastillas se han de elaborar de cada clase para que el beneficio sea máximo?
Solución:
El máximo
beneficio es de 24 €, y se obtiene fabricando 6 pastillas
grandes y 12 pequeñas.
Problema 7. Una peña
de aficionados de un equipo de fútbol encarga a una empresa de transportes el
viaje para llevar a los 1200 socios a ver la final de su equipo. La empresa
dispone de autobuses de 50 plazas y de microbuses de 30 plazas. El precio de
cada autobús es de 252 euros y el de cada microbús de 180 euros.
Sabiendo que
la empresa sólo dispone de 28 conductores, se pide:
a) ¿Qué
número de autobuses y microbuses deben contratarse para conseguir el mínimo
coste posible?
b) ¿Cuál
será el valor de dicho coste mínimo?
Solución:
a) 24 autobuses y ningún microbús.
b)
el coste sería de 6048 euros.
Problema 8. En una fábrica
se hacen dos tipos de mesa de jardín: Laguna y Sociedad. Cada mesa Laguna
necesita un cuarto de acero por cada Kg. de madera y produce un beneficio de
250 euros, mientras que una mesa Sociedad necesita medio Kg. de acero por cada
Kg. de madera y produce 400 euros de beneficio. En la fábrica se pueden elaborar
diariamente hasta 150 Kg. de madera y 50 Kg. de acero, aunque por problemas de
maquinaria no pueden fabricar mas de 125 mesas de cada tipo.
¿Cuántas mesas
de cada tipo deben fabricar al día para que sea máximo el beneficio?
Solución:
Se
tienen que fabricar 100 mesas Laguna y 50 mesas Sociedad.
Problema 9. Un colegio
prepara una excursión para 400 alumnos. La empresa de transporte tiene 8
autocares de 40 plazas y 10 autocares de 50 plazas, pero solo dispone de 9 chóferes.
El alquiler de un autocar grande cuesta 80 euros y el de uno pequeño, 60 euros.
Calcular cuántos de cada tipo hay que utilizar para que la excursión resulte lo
más barata posible para el colegio.
Solución:
5 autocares
de 40 plazas y 4 de 50 plazas.
Problema 10. Se va a
organizar una planta de un taller de maquinaria donde van a trabajar diseñadores
y mecánicos. Por necesidades de mercado, es necesario que haya mayor o igual
número de mecánicos que de diseñadores y que el número de mecánicos no supere
al doble que el de diseñadores. En total hay disponibles 30 diseñadores y 20
mecánicos. El beneficio de la empresa por jornada es de 250 euros por diseñador
y 200 euros por mecánico.
¿Cuántos
trabajadores de cada clase deben elegirse para obtener el máximo beneficio y
cual es este?
Solución:
20 diseñadores
y 20 mecánicos dan el máximo beneficio, y este es 9000 euros.